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Abstract: The paper proposes a method to include feedback controller algorithms within finite
element analysis code, in order to simulate the closed loop response of active vibration control
systems. A clamped cantilever beam equipped with piezoelectric actuators is considered as a
test case. The beam including actuation is simulated in the ANSYS finite element modeling
environment. The open-loop response of the model is contrasted to the laboratory device and
found to be an accurate representation of the real system. ANSYS parametric design language
(APDL) is used to create loops of transient simulations, where boundary conditions are updated
based on “sensor” readings represented by nodal position values and voltage inputs to the
piezoceramic actuators are generated through a linear quadratic controller algorithm. According
to the experimental verification results presented in this paper, the proposed closed-loop finite
element analysis method gives an accurate representation of the behavior of the investigated
active vibration attenuation system.
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1. INTRODUCTION

Finite element analysis (FEA) substantially complements
the range of hardware tools used in experimental me-
chanics, such as electronic speckle pattern interferometers
(ESPI) (Butters and Leendertz, 1971), polariscopes for
stress analysis (Frankovský, 2007), laser Doppler vibrom-
eters (Halliwell, 1979) and others. Although the concept
of finite element analysis and the finite element method
(FEM) has been established as early as the time of World
War II (Widas, 1997), its proliferation to everyday engi-
neering analysis and product development was made only
possible by the development of mainstream computing
hardware. Software tools for vibration analysis are now
a part of most off-the-shelf FEM packages, allowing en-
gineers to investigate the vibration response of concept
products using modal, harmonic and transient tests. One
particular area in which readily available FEA software
lags behind current trends is, the integration of the tools
of the trade of the control engineering specialist. Though
this is also true for most fields where FEA is applied,
vibrating mechanical systems are being converted to com-
plex smart structures. These smart structures integrate
sensors, actuators, computing hardware and control logic
to create systems enabled with active vibration control
(AVC) (Fuller et al., 1996; Inman, 2006).

Elements allowing the simulation of coupled physical ef-
fects, such as the electro-mechanical interaction of piezo-
ceramics, are routinely implemented in most modern FEM
packages. However, their use is limited to passive open-
loop tests, without assessing the effect of the control sys-
tem itself. The traditional prototyping approach involves
dividing the design process into two stages: creating an

open-loop FEA model and performing a simple system
identification procedure, then constructing a closed-loop
control system using a simplified mathematical model of
the structure (Hatch, 2000). Unlike the highly integrated
physical system, fine-tuning of the structural and control
design becomes a separate process.

Integration of the control system inside the FEA model not
only simplifies the design process by eliminating a need of
a separate design stage, but also removes the need to use a
severely truncated version of the full model. Although the
design and verification of controllers using process models
yields almost instantaneous results, the level of precision
may not be sufficient for all prototyping tasks. In case the
control system is implemented inside the FEA software,
one may assess the effect of the controller on a model that
represents the real system much better than the process
model. Moreover, given the controller is tuned or designed
within the FEA procedure, it is possible to directly refine
the controlled structure alongside with the controller. Un-
fortunately, such a one-stage and direct structural/control
design process is not a standardly available option in
mainstream FEM software.

Most researchers adopted this detached design flow: create
a numerical model of the structure and possibly optimize
actuator locations in open-loop, then based on a process
model design a controller separately. Recently however,
numerous articles appeared in which the control prototyp-
ing of smart systems has been integrated into the FEM
simulation. Dong et al. used the linear quadratic Gaussian
algorithm in a closed-loop numerical simulation and then
compared the results to experimental measurements with
good results (Dong et al., 2006). A PID controller has



been used in ANSYS by Xiaojin et al., verifying actua-
tor placement on a plate with vibration control (Xiaojin
et al., 2010). In a more elaborate article, Malgaca has
implemented direct velocity control (DVC) to suppress vi-
brations of a composite cantilever beam. These experimen-
tal results were subsequently matched to the simulations
performed using DVC applied to an ANSYS simulation
loop (Malgaca, 2010). The authors reported a good match
between the FEA and experimental results, while noting
the promising potential of integrating control systems into
FEA software.

In a previous work, a PID controller was implemented in
ANSYS APDL, designed to govern the maximal allow-
able temperature on a pipe while subjected to in-service
maintenance welding (Takács, 2010). In this paper, we
will propose a method to implement a linear quadratic
controller (LQ) inside the ANSYS FEM software pack-
age. This LQ controller will control the input voltage on
the piezoceramic actuators embedded in a smart struc-
ture with active vibration control. The validity of the
approach will be confirmed by contrasting experimental
measurement results with the simulations performed by
the integrated FEM / control system.

2. THE VIBRATION CONTROL SYSTEM AND ITS
FEM MODELING

2.1 Experimental hardware

The experimental hardware featured throughout this pa-
per is the classic example of a clamped cantilever beam.
The dimensions of the beam are 550 × 40 × 3 mm and
is made of commercially pure aluminium. The beam is
fixed to a clamping system, resting on a heavy base.
This cantilever beam is equipped with several piezoelectric
transducers, of which only the two closest to the clamped
end are used as actuators 1 . The transducers were man-
ufactured by Midé Technology and are bearing the prod-
uct designation QP16n. The type of piezoceramic used is
PZT5A and the size of the actuator (without its thin film
casing is) 45.9 × 20.7 × 0.25 mm. The two actuators are
co-located on the opposite sides of the beam, and receive
the same signal with a reversed polarity.

2.2 Finite element modeling

Theoretical foundations Let us begin the discussion by
recapitulating the foundations for creating an equation of
motion for systems with piezoelectric actuation. One may
express the equation of motion from a purely mechanical
viewpoint for a multiple DOF (or discretized) system by
using (Inman, 2006):

Mq̈+Bsq̇+Ksq = fe (1)

where matrix M is the mass matrix, Bs is the structural
damping matrix, Ks is the structural stiffness matrix and
fe is an external force supplied to the system, for example
resulting from an actuator. Vector q contains the displace-
ment coordinates for the individual DOF. Of course, for
a mechanical system including piezoelectric actuators or
1 The active transducers are bonded 14 mm from the clamped edge,
inactive at 90 and 320 mm.

sensors, one has to account for the coupled electrical and
mechanical effects. The piezoelectric constitutive equa-
tions in the stress-charge form are given by (Piefort, 2001;
Fuller et al., 1996):

σ = cES− epEe (2)

De = ep
TS+ εSEe (3)

where S is strain, σ is stress, De is the electric displace-
ment, Ee is the electric field strength, ep are the piezo-
electric coupling coefficients in the stress-charge form, cE
contains stiffness coefficients under constant electric field
and εS is the electric permittivity matrix under constant
stain. Subscripts E indicate zero or constant electric field
and σ zero or constant stress field, while superscript T de-
notes matrix transposition (Takács and Rohaľ-Ilkiv, 2012).
This can be compacted in a matrix form to yield:

[

σ
D

]

=

[

cE ep
ep

T
−εS

] [

S
−E

]

(4)

Using the variational principle and applying element dis-
cretization, we may arrive at

[

M 0
0 0

] [

q̈
p̈

]

+

[

Bs 0
0 Bp

] [

q̇
ṗ

]

+ (5)

+

[

Ks Kz

Kz

T Kp

] [

q
p

]

=

[

fe
Le

]

(6)

where Bp is responsible for electric damping (dielectric
loss), Kp is the electric stiffness (dielectric permittivity
coefficient matrix) and Kz the piezoelectric coupling ma-
trix (Ansys Inc., 2009). Vector variables q and p express
structural and electrical degrees of freedom.

Practical realization The experimental hardware was
modeled in the ANSYS FEA software package. The beam
and the piezoelectric materials have been modeled by the
SOLID5 element, which has 8 nodes. Only the displace-
ment degrees of freedom (DOF) were used for the beam,
while the numerical representation of the piezoceramic
transducers employed the electrical DOF as well.

The solid volumetric model of the beam and the trans-
ducers was created from block shapes, using the BLC4
command. After creating the main blocks, the beam was
sectioned along the piezoelectric transducers using rotated
work planes. Material properties have been assigned using
data provided by the manufacturer of the piezoceramics
and commonly available engineering tables (MIDÉ Tech-
nology Corporation, 2007). The volumetric model has been
meshed by a 8 mm maximal global element size. Because
the beam was sectioned to sub-blocks, the nodes in the
piezoceramics line up perfectly with the nodes of the
beam located underneath. This way adjacent nodes may
be joined by the NUMMRG command, which is aimed
at merging nodes located within a tolerance range. The
merged nodes will behave as one in simulation, meaning
that if the piezoceramic material deforms, so will the
beam underneath. This assumes a perfect bond between
the beam and the actuators, discarding the minor effects
the thin layer of resin might have on the behavior of the
structure.

At the fixed end of the beam, zero displacement DOF is
specified for the x, y and z directions, thereby simulating



(a) FEM of the cantilever beam showing elements (b) Detail of the model and boundary conditions

Fig. 1. The finite element model of the clamped cantilever beam equipped with piezoceramic patches is shown in (a),
while a detailed view of the actuator and its coupled DOF is given in (b)

the effect of the clamp. Gravitational pull is taken into
account by specifying an acceleration vector in the z
direction. Finally, the electrodes on the piezoceramics are
modeled by defining the appropriate boundary conditions.
The upper layer of nodes creates the top (outwards)
electrode on each transducer, where a coupling is created
by the CP command and the appropriate voltage potential
is assigned. The electrodes that will be engaged in the
control system have this value constantly changing, in fact,
this is the where the input from the controller will be
utilized later. The unused transducers are short-circuited,
which is represented by a zero voltage potential on each
node in top layer. Electrodes on the bottom (bonded) side
are defined in a similar fashion. Only this time, a fixed
zero voltage potential is defined on the bottom layers of
all transducers, representing the ground terminal of the
actuators.

The FEA model of the cantilever beam is illustrated in
Figure 1. The whole beam is shown in Figure 1(a), where
the distribution and relative placement of actuators is
featured. The symbols denoting the different boundary
conditions are depicted in a close-up detail in Figure 1(b),
where the darker triangle symbols on the left denote the
zero displacement DOF (clamping) and the lighter triangle
symbols on the right and their connection denotes the
definition of the coupled electric DOF (electric terminals).

Rayleigh damping was used in the finite element analysis
presented here, assuming that the damping matrix is
constructed as the weighted sum of mass and stiffness
matrices:

Bs = αM + βKs (7)

where α and β are damping constants. These may be
calculated from the modal damping ratios or alternatively,
chosen to suit the given application. All simulations fea-
tured in this paper assume α = 0 and β = 0.00015
damping constants. The choice for the seemingly small β
coefficient is confirmed by the correctness of both the open-
and the closed-loop verification experiments presented in
the upcoming sections.

3. THE CLOSED-LOOP CONTROL SYSTEM AND
ITS FEM MODELING

3.1 Linear quadratic control

Theoretical foundations A linear quadratic (LQ) con-
troller attempts to minimize the overall control energy,
indicated by a cost function given in a quadratic form.
When multiplied by the state, the resulting feedback ma-
trix yields an input which will keep the cost function at its
minimum. Let us consider a discrete, linear time-invariant
state-space system defined by (Inman, 2006; Hatch, 2000;
Hellerstein et al., 2004):

xk+1 = Axk +Buk (8)

yk = Cxk +Duk (9)

where xk is the state at time (k), yk is the output at time
(k), A is the state transition matrix, B the input matrix,
C the output matrix and D = 0 is the direct input feed-
through matrix.

The LQR controller is the feedback gain K that minimizes
the infinite horizon cost function, which uses a weighted
square of the current state and current input to express
cost (Hellerstein et al., 2004; Williams II and Lawrence,
2007):

J =

∞
∑

k=0

(

xT
k Qxk + uT

k Ruk

)

(10)

where Q is a positive semi-definite state weighting matrix,
R is a positive definite input weighting matrix and Pf is
a terminal weighting matrix. The output voltage at the
piezoelectric actuators is defined as the multiple of the LQ
gain and the currently measured or observed system state:

uk =−Kxk (11)

Minimizing the cost function defined by Equation (10)
results the LQ feedback gain (Antsaklis and Michel, 2005;
Williams II and Lawrence, 2007):

K = (R +BTPB)−1BTPA (12)



(a) Open-loop response (no control) (b) Closed-loop response (with control)

Fig. 2. The figure shows the results of the open-loop analysis without control in (a), while (b) denotes the closed-loop
response without control. The default ANSYS output uses TIME to denote time in s and VALU as the deflection
in m at the beam tip

where P is the solution of the discrete time algebraic Ri-
catti equation (DARE) defined by (Antsaklis and Michel,
2005; Williams II and Lawrence, 2007):

P = Q+AT
(

P−PB
(

R+BTPB
)

−1
BTP

)

A (13)

Practical realization In order to compute the LQ gain
introduced by Equations (10)-(13), a simplified state-space
process model has to be defined according to Equation
(8). This process model may be acquired based on a first
principles model, FEA results, reduced and truncated FEA
matrices or experimental identification results. This work
utilizes the results of an experimental identification pro-
cedure, in which the piezoelectric actuators used a chirp
signal to excite the beam in the bandwidth of interest. The
resulting input and output data has been identified using
the Matlab System Identification Toolbox, using subspace
identification methods (Ljung., 1999). The data set was
estimated using N4SID algorithm (Ljung., 1999) and re-
sulted in a loss function of 0.015 and a final prediction
error (FPE) of 0.014. The identification procedure yielded
the following second order process model:

A=

[

0.867 1.112
−0.214 0.870

]

B =

[

9.336E−2
5.301E−2

]

(14)

C= [−0.553 0.705]

Computation of the controller gain can be automated in
Matlab, given one has already defined the mathematical
model of the system and the tunable penalty matrices Q
and R. Matrix P can be computed using the command
dare based on Equation (13) and then substituted to (12)
to get the LQ gain. Alternatively, these two steps can be
performed in one stage by using the dlqr command. The
control gain calculated for the smart beam featured in this
system is:

K = [ 12.97 125.50 ] (15)

In addition to the controller gain, an observer must be
created to estimate system states xk, based on output

measurements yk. The discrete Kalman estimator can
be computed by using the kalman command in Matlabt
that—amongst others—results in the Kalman innovation
gain M, which in this case was computed as:

M =

[

−4.337
0.354

]

(16)

Discarding process and measurement noise results in a
simple observer equation, given by (Inman, 2006):

x̃k = Ax̃k−1 +Buk +M(y −Cx̃k−1) (17)

where x̃k denotes the current state estimate, while x̃k−1

denotes the state estimate in the previous iteration and
matrices A,B,C represent the state-space model of the
system.

3.2 Closed-loop FEM in ANSYS

We begin our discussion on implementing a simple LQ con-
troller into ANSYS by assuming that the solid model has
been created, meshed and boundary conditions have been
defined according to the discussion presented previously in
Section 2.2.2.

The controller implementation in the ANSYS parametric
design language (APDL) involves utilizing the commands
for elementary matrix operations and basic program flow
controls. Given that a process model of the the discrete
linear state-space system defined by A,B,C is available,
moreover the LQ gain K has been computed along with
the Kalman filter innovation gain M, these variables must
be stored in a matrix form. Matrices are sized using the
*DIM command, while their elements can be defined using
the *SET command in APDL. Along with the required
controller and observer parameters, certain temporary
matrix variables must be defined.

Another necessary initialization task is defining the type
of the analysis, which in this case is a transient analysis.
This definition is identical to the customary steps used in
ANSYS for transient tests (Ansys Inc., 2009):

/SOLU
ANTYPE ,4



Fig. 3. Simplified experimental connection scheme of the smart cantilever beam

TRNOPT,FULL ,,DAMP
LUMPM ,0
DELTIM,Tres
TINTP , ,0.25 ,0.5 ,0.5
TIME ,Tstep

At the starting point of the simulation, we define a
boundary condition emulating an initial force effect that
in turn causes the beam to statically deflect to the desired
initial deflection position. This very first step in the
transient solution is solved, and the initial force effect is
removed from the test, the nodal deflection is retrieved
and converted into mm:

F,350,FZ ,frce
KBC ,1
SOLVE
FDELE ,350,ALL
*GET ,y,NODE ,351,U,Z
y=y*1000

In order to compare the results with the experimental ones,
the steps are written to a comma separated value (CSV)
file. The file is created by the command *CFOPEN 2 while
lines are added using the *VWRITE command augmented
by formatting instructions:

*CFOPEN ,results ,csv
*VWRITE ,tstep ,y,u,0,0
\%0.0e,\%0.0f,\%0.0f,\%0.0f ,\%0.0f,

The main controller algorithm can be called by a program-
ming cycle, realized by the *DO–*ENDDO commands.
This cycle uses the time variable as its index variable, while
the step size is the discrete sampling time. At each cycle,
the transient simulation time is set, the nested controller
macro is used

*DO,t,2*Tstep ,Tstop ,Tstep
TIME ,t
*USE ,controller.mac
*VWRITE ,t,y,u,x1 ,x2
\%0.0e ,\%0.0f ,\%0.0f ,\%0.0f

,\%0.0f
SOLVE

*ENDDO

The sensor is emulated by reading out the nodal position
at the end of the beam:

2 The file needs to be closed by a *CFCLOSE at the end of the
simulation.

*GET ,y,NODE ,351,U,Z
y=y*1000

The state observer is implemented according to Equation
(17) by using the elementary matrix manipulation com-
mands in APDL, for example *MOPER for multiplication,
*VFACT for scaling, *VFUN for copying and *VOPER
for adding:

*MOPER ,t1 ,A,MULT ,x
*VFACT ,u
*VFUN ,t2 ,COPY ,B
*MOPER ,t3 ,C,MULT ,x
t3(1,1)=y-t3(1,1)
t3B=t3(1,1)
*VFACT ,t3B
*VFUN ,t4 ,COPY ,M
*VOPER ,t4 ,t2 ,ADD ,t4
*VOPER ,x,t1,ADD ,t4

The implementation of the LQ controller itself is very
simple and it is based on Equation (11) involving only
a matrix multiplication to compute the input uk, based
on the estimated state x̃k:

*MOPER ,ut ,K,MULT ,x
u=-ut(1,1)

The saturation used as a safety measure is solved by a
simple *IF–*ELSEIF condition:

*IF ,u,LT ,uL,THEN
u=uL

*ELSEIF,u,GT ,uH
u=uH

*ENDIF

Finally, both of the actuators are set to receive the desired
voltage by invoking d,p1,VOLT,u,0 and d,p2,VOLT,u,0
. The results of the open-loop simulation in ANSYS are
shown in Figure 2(a), while the closed-loop simulation is
featured in Figure 2(b).

4. EXPERIMENT

4.1 Experimental setup

The experiments utilized the device described in Section
2.1, with the additional piezoelectric transducers short-
circuited in order to prevent electro-mechanical interaction
with the structure. Only the two collocated transducers
closest to the clamped end were engaged. Deflections at
the beam tip were measured using a Keyence LK-G82
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Fig. 4. Block scheme of the linear quadratic control system used in the experiments

industrial laser triangulation system, which—using its pro-
prietary LK-G3001V central processing unit—supplies an
analog voltage signal scaled linearly to the the true deflec-
tion measured in mm. Power to the pair of piezoelectric
actuators is supplied via the Midé Technology EL-1225
operational amplifier capable of driving high-capacitance
loads. The amplifier is set to a constant 20× gain and uses
an analog voltage input. The analog voltage output from
the distance measurement system and the analog input
to the actuators is connected to a National Instruments
BNC-2111 connector board, which in turn supplies signals
to and from a National Instruments PCI-6030E laboratory
measurement card. This measurement card is located in a
Target computer running the Matlab xPC Target rapid
control prototyping platform, which in turn is controlled
using a Host computer running Matlab Software. The
Target and Host computers are communicating via the
TCP/IP protocol. The simplified experimental connection
scheme is featured in Figure 3.

The linear quadratic control logic was implemented as a
Matlab Simulink block scheme, then it was subsequently
translated automatically into the C language. Figure 4
shows the resulting block scheme that was used in the
experimental test. The scheme reads its input from the
A/D port of the measurement card and then compensates
for scaling. This signal is fed to a Kalman filter, creating
estimates of the state, which is then multiplied by the fixed
LQ gain to create inputs. The raw inputs are saturated,
in order to prevent de-polarization of the piezoceramic
layer. The signal is then compensated for the gain of the
operational amplifiers and set to the D/A port of the
measurement card. Variables are logged into the memory
of the xPC Target system and then saved to its hard drive
for later retrieval.

4.2 Experimental procedure

To perform the open- and closed-loop experiments, the tip
of the beam has been deformed to +10 mm then released
without any additional outside force interaction. Due to
this initial condition, the beam starts to vibrate and in
the open-loop scenario eventually settles as a result of
its internal damping. Because the system is very lightly
damped, the settling time of the open-loop experiment was
well in the excess of 30 s. The closed-loop tests involved
engaging the control system and repeating the same initial
condition. The active vibration control system shortened
the settling time by more than an order of magnitude,
effectively rendering the blade motionless after 2-3 s.

5. RESULTS

5.1 Open-loop response

Figure 5 shows the result of the open-loop experiment,
with the control system turned off. The solid black line
represents the experimental results, the gray dash-dot
corresponds to the ANSYS simulation results, the x axis
denotes time, while the deflection is shown on the y axis
in mm. The full 30 s response is featured in Figure 5(a),
while a closer detail of the same measurement is provided
in Figure 5(b). The open-loop sum of squares error (SSE)
computed from the experimental measurement is 9 240 (-).
As it is clearly visible from the figure, the response of the
open-loop model matches the measured response very well.
There are practically no differences between the responses,
the modeling assumptions have been right. The open-loop
finite element model is correct, and suitable to contrast
closed-loop responses.
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(a) Open-loop output responses (deflection)
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(b) Detail of the open-loop responses (deflection)

Fig. 5. The figure shows the response of the cantilever
beam to an initial deflection without control. The
experimental measurement of the settling of the tip
position is compared to the ANSYS results in (a),
while (b) illustrates the first 3 seconds detail of the
same response.
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(b) Closed-loop inputs (input voltage)

Fig. 6. The closed-loop simulated and measured deflection is contrasted to the free response in (a), while the
corresponding inputs are shown below in (b)

5.2 Closed-loop response

The simulation results are compared to the experimental
measurements on Figure 6, this time with the control
system engaged. The top figure contrasts the measured
deflection outputs in mm (Figure 6(a)), while the bottom
illustrates the control input voltage (Figure 6(b)).

The first thing to notice is the amount of damping provided
by the control system. The open-loop response settles well
in the excess of 30 s, while the closed-loop vibrations return
to equilibrium much faster. By using active vibration con-
trol, a more than 10 times improvement can be observed
in the total settling time of the beam tip vibrations. The
damping improvement is also clear by the examining the
SSE: the open-loop system produced 9240 (-), while in
close-loop this fell to 1724 (-) for the ANSYS simulation,
and 2105 (-) for the experiment.

Comparing the outputs uk in Figure 6(a) reveals a very
good match of the simulated and measured course of
deflections. Assuming to have a correct open-loop finite el-
ement model, a simulation with built-in control logic emu-
lates the behavior of the real system accurately. The input
voltages supplied to the piezoelectric actuators depicted in
Figure 6(b) demonstrate an excellent match as well. The
only difference is the evolution of inputs, when the beam
tip approaches its mechanical equilibrium. The real model
is subject to slight and unintentional outside disturbances:
for example heat convection in the room, mechanical noise
due to people present in the laboratory, road traffic etc

(Takács and Rohaľ-Ilkiv, 2012). This difference cannot be
detected by looking at the outputs, since the real controller
compensates these errors, but due to this compensating
action, the inputs must be different.

6. CONCLUSIONS

A method of implementing a linear quadratic controller
in the ANSYS APDL macro language was introduced
here. This controller was used to simulate the transient re-
sponse of a smart structure under active vibration control.
Based on the comparison of simulated and experimentally
measured results presented in this work, we may state
that the proposed simulation procedure resulted in a very
close match between FEA and reality. Such a one-stage
simulation method may be beneficial in the prototyping
of complex shaped structures, where a simple—possibly
linear or linearized—process model cannot fully represent
the real plant. Moreover, this integrated FEM and control
prototyping process may yield better results than any of
these methods alone.

The increased precision, however, comes with a price. A
process model used in Matlab to represent the controlled
plant allows the fast reconfiguration of the controller and
almost instantaneous simulation results. The integrated
FEM and control design requires to run full transient
tests, which can be especially lengthy for complex systems.
Therefore, our general recommendation regarding the in-
tegrated design of control systems in FEA software is the
following:



• Create the open-loop FEA model with integrated
actuators

• Extract a process model from FEA (results from
open-loop simulations or model reduction)

• Use a process model to design, tune and verify your
controller outside FEA software (eg. in Matlab)

• Use the controller candidate to get a more precise
closed-loop plant response inside FEA analysis, if
necessary fine-tune either the controller, the structure
or both.
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